

Impediments to Innovative Stormwater Solutions:

We know BMP practices are good . . . but:

- How much value do you get from them?
- Which practices are best for which situations?
- How do they integrate with detention requirements?
- How many BMPs are too many? Isn't more always a good thing?

Methodology

 Runoff Reduction Method –Simple, based on SCS method, reduces curve number based on meeting specific design criteria

Bioretention Design Criteria						
	40% Volume Reduction	80% Volume Reduction				
Sizing	Filter surface area = minimum 3% CDA*	Filter surface area = minimum 4% CDA*				
Filter Media Depth	18" minimum	24" minimum				
Sub-soil testing	Not- required	½" per hour minimum				
Pretreatment	External OK	Grass filter strip or equivalent required				

*CDA = Contributing Drainage Area

"The Runoff Reduction Method", University Council on Water Resources, December 2010:

http://onlinelibrary.wiley.com/doi/10.1111/j.1936-704X.2010.00388.x/pdf

	impervious pavement	45% runoff volume reduction	0.45	1.55	2405	2940
3.b. Permeable Pavement #2 (Spec #7)	acres of permeable pavement	75% runoff volume reduction	0.75	0.32	828	276
. Bioretention	1. I			-		
6.a. Bioretention #1 or Urban Bioretention (Spec #9)	impervious acres draining to bioretention	40% runoff volume reduction	0.40	4.10	5656	8483
	turf acres draining to bioretention	40% runoff volume reduction	0.40	2.80	813	1220
6.b. Bioretention #2 (Spec #9)	impervious acres draining to bioretention	80% runoff volume reduction	0.80	0.00	0	0
	turf acres draining to bioretention	80% runoff volume reduction	0.80	0.00	0	0

The	e Runoff Red	duction N	letho	b	WAT	ter fo ERSH TECTIO	R
Dra	inage Area A		A soils	B Soils	C Soils	D Soils	
Forest/Open Space – undisturbed, protected forest/open space or Managed Turf – disturbed, graded for yards or other turf to be		Area (acres)	0.0	0.0	0.0	0.0	
		ĊN	30	55	70	77	
		Area (acres)	0.0	3.1	0.0	0.0	
		ĊN	39	61	74	80	
Impervious Cover		Area (acres)	0.0	5.7	0.0	0.0	
		ĊN	98	98	98	98	
						Weighted C S	
						85	1.79
			1-year stor	2-year storr	10-year sto	100-year storr	n
RV _{Developed} (in) with no Runoff Reduction		1.33	1.58	2.99	4.95		
RV _{Developed} (in) with Runoff Reduction		0.97	1.22	2.63	4.59		
Adjusted CN			78.9	79.4	80.9	81.5	

Planned commercial development with 35 individual buildings and 80 total units First phase built in 2007 Site is located in Snellville, Georgia

Towne Centre Case Study – Vicinity Map Towne Centre Case Study – Location Map

Towne Centre Case Study – Existing Stormwater Layout

27,628 CF 82,497 CF

<u>21,449 CF</u> 131,574 CF

Required Water Quality Volume: Required Channel Protection Volume: 100 Year Storm Volume: Total CF Pond Storage Provided:

Towne Centre Case Study -Four Alternatives

- Bioretention Alternate Bioretention only
- Porous Alternate Porous pavement only
- Soil Alternate Soil amendments only
- Multiple Alternate Bioretention, porous
- pavement, soil amendments & chamber system

Bio. Alt. Stormwater Layout 10,722 CF Required Water Quality Volume: **Required Channel Protection Volume:** 74,172 CF 100 Year Storm Volume: 19,564 CF

104,440 CF

Towne Centre Case Study -

Towne Centre Case Study -Porous Alt. Stormwater Layout

62,903 CF

22,121 CF

91,364 CF

Required Water Quality Volume: **Required Channel Protection Volume:** 100 Year Storm Volume: Total CF Pond Storage Provided:

Total CF Pond Storage Provided:

Towne Centre Case Study – Soil Alt. Stormwater Layout

Required Water Quality Volume: Required Channel Protection Volume: 100 Year Storm Volume: Total CF Pond Storage Provided: 23,718 CF 66,749 CF <u>24,053 CF</u> 114,520 CF Towne Centre Case Study – Multiple Alt. Stormwater Layout

Required Water Quality Volume: Required Channel Protection Volume: 100 Year Storm Volume: Total CF Pond Storage Provided: 3,460 CF 56,614 CF <u>16,072 CF</u> 76,146 CF

Towne Centre Case Study – Side-by-side Volumes

	EXISTING	BIO. ALT	POROUS ALT.	SOIL ALT.	MULTIPLE ALT.
TOTAL RUNOFF (CF)	276,946	252,680	237,568	237,640	219,033
DIFFERENCE	-	24,266	39,378	39,306	57,913
PERCENTAGE DIFFERENCE	0.00%	8.76%	14.22%	14.19%	20.91%
WQv	27,628	10,722	6,340	23,718	3,460
CPv	82,497	74,172	62,903	66,749	56,614
100 YR. VOLUME	21,449	19,564	22,121	24,053	16,072
TOTAL VOLUME DETAINED	131,574	104,458	91,364	114,520	76,146
DIFFERENCE		27,116	40,210	17,054	55,428
PERCENTAGE DIFFERENCE	0.00%	20.61%	30.56%	12.96%	42.13%

Towne Centre Case Study -

Side-by-side Costs

	EXISTING	BIO. ALT	POROUS ALT.	SOIL ALT.	MULTIPLE ALT.
MOBILIZATION	\$6,285.00	\$5,545.00	\$6,285.00	\$6,285.00	\$5,260.00
GRADING & EXCAVATION	\$52,140.00	\$34,140.00	\$25,410.00	\$32,880.00	\$17,760.00
PAVEMENTS	\$749,872.50	\$775,677.50	\$862,310.10	\$749,872.50	\$816,412.70
WALLS	\$137,175.00	\$48,600.00	\$45,880.00	\$43,800.00	\$11,560.00
STORM UTILITIES	\$123,889.00	\$96,018.00	\$114,038.00	\$123,889.00	\$87,108.00
LANDSCAPE	\$143,520.00	\$246,771.60	\$143,520.00	\$230,170.00	\$328,421.60
DESIGN	\$54,300.00	\$54,600.00	\$48,835.00	\$47,560.00	\$63,790.00
TOTAL PROJECT COST	\$1,267,181.50	\$1,261,352.10	\$1,246,278.10	\$1,234,456.50	\$1,330,312.30
DIFFERENCE	-	\$5,829.40	\$20,903.40	\$32,725.00	(\$63,130.80)
PERCENTAGE DIFFERENCE	0.00%	0.46%	1.65%	2.58%	-4.98%

Answers to Innovative Stormwater Solutions:

- How much value do you get from them?
- Which practices are best for which situations?
- How do they integrate with detention requirements?
 How many BMPs are too many? Isn't more always a good thing?
- To achieve more innovative stormwater solutions we need to:
- Credit BMPs for their full contribution to water quality & quantity
- Perform comparative analysis for promising sites and situations
- Enact flexible stormwater regulations with higher water quality and quantity standards

Conclusions from this case study?

- For appropriate sites, the initial cost of BMPs can be the <u>same or</u> <u>lower cost</u> as traditional stormwater practices. This does not take into account the added landscape value of the site.
- The creative opportunity for stormwater designers is huge.
- Bioretention is not always the best or most cost effective BMP.
- BMPs make noteworthy contributions to water quantity.
- Regulations can significantly affect the motivation for innovative design.