

Lamprey River 100 Year Flood Risk Project

Two year project funded by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET)

Interdisciplinary Team:

OF NEW HAMPSHIRE

Robert Roseen, Ann Scholz, Thomas Ballestero, UNH Stormwater Center Cameron Wake, Institute for the Study of Earth, Oceans and Space, UNH Steve Miller, Great Bay National Estuarine Research Reserve Kathy Mills, Great Bay National Estuarine Research Reserve Fay Rubin, Institute for the Study of Earth, Oceans and Space, UNH Michael Simpson, Antioch University New England Lisa Townson and Julia Peterson, UNH Cooperative Extension

CARBON SOLUTION

The New Orleans Hurricane Protection System: What Went Wrong and Why-- 10 Lessons Learned from Katrina by the ASCE Hurricane Katrina External Review Panel and the USACE Interagency Performance Evaluation Task Force

Failure to think globally and act locally-We must account for climate change

- Eailure to absorb new knowledge
- 3. Failure to understand, manage, and communicate risk-Need to take rigorous risk based approach,
- 4. Failure to build quality in
- 5 Failure to build in resilience
- 6. Failure to provide redundancy
- 7. Failure to see that the sum of many parts does not equal a system
- 8. The buck couldn't find a place to stop--Poor organization, lack of accountability
- 9. Beware of interfaces: materials and jurisdiction
- 10. Follow the money-People responsible for design and construction had no control of the monies.

Research examining impacts of climate change on rainfall depths (28-60% increase) demonstrated existing urban infrastructure (culverts) will be under-capacity by 35% (Guo, 2006)

> This in addition to stressed stormwater infrastructure from land use change

15 Highest Events -

Peak Recorded Discharges on Lamprey River

	Rank	Date	Discharge (cfs)	
	1	16-May-06	8,970	
	2	18-Apr-07	8,450	
	3 7-Apr-87		7,570	
4		22-Oct-96	7,080	
	5	15-Mar-10	6,760	
	6	20-Mar-36	5,490	
	7	15-Mar-77	5,000	
	8	15-June-98	4,720	
	9	3-Apr-04	4,690	
	10	30-Mar-83	4,570	
	11	6-Apr-60	4,470	
	12	11-May-54	4,070	
	13	2-Feb-81	3,670	
	14	31-July-38	3,530	
	15	1-Apr-93	3,400	

Of 15 largest events since 1934:
8 have occurred in last 25 years
5 have occurred in last 15 years
3 have occurred in last 5 years

FIS: 7300 cfs =100-Yr Flood Flow

Source: http://waterdata.usgs.gov/nwis

Project Hypothesis

The use of LID planning and technologies can contribute to building community resiliency in managing water resources and reduce the flood risk associated with current and projected changes in land use and climate.

4

8

Results from 2010 Climate and Land Use Updates

 Model updates indicated a 45% increase in the 100-year flood flow from

USGS gage: 7,300 cfs (FIS) to 10,649 cfs (NRCC)

• An increase in the base flood elevations by an average of 2.7 feet along the 36 mile study reach.

NRCC elevation almost two feet higher than April 2007 event

2050 Build-out at the Watershed Scale and Subwatershed Scale

Watershed Scale Build-Out

Conventional development resulted in an increase 0.3 feet in base flood elevation and a 4.3% flood flow increase and only a 2.8% increase with the LID scenario.

Subwatershed Scale Build-Out

- Urban sub basins had substantial runoff reductions using LID build-out scenarios and in one instance actually reduced beyond current conditions.
- Conventional build-out had increases in runoff from 29-36% whereas LID build-out had a range of -2-7%.

This last finding is substantial illustrates that LID in a redevelopment scenario can serve to reduce runoff from current conditions.

Funding

Funding is provided by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET) whose mission is to support the scientific development of innovative technologies for understanding and reversing the impacts of coastal and estuarine contamination and degradation.

23

Summary of Cross Se	ection Data Source
Source	Number
FEMA FIS Backup Data	111
Duplicates	19
Surveyed	12
NHDOT/Consultants	34
GIS	44
Tot	al 220

• FIS sections were duplicated as needed to provide immediate sections up and downstream of bridges

- No backup data available for Lee
- Projects included additional sections supplementing FIS sections
- Improved modeling in RT108 corridor and tributaries

	Sum	mary of Bridge Structure Source	e for the Lamprey River	
Community	Station	Road Name	Data Source	
Raymond	181300	Dudley Road		
	180964	Raymond Road (RT 27)	Electronic WSP2 files from Roald Haestad, Inc. March 1993	
	167900	Langford Road		
	160746	Main Street		
	155060	Epping Street		
	154106	B&M Railroad		
	147643	Freetown Road (RT 107)		
	141372	Prescott Road		
Epping	136759	State Route 101		
	127937	Epping Road (RT 27)	Electronic HEC-RAS files from NHDOT, 2010	
	123964	Blake Road	As-built drawings from NHDOT, dates vary	
	107459	Main Street (Plummer)		
	106269	Mill Street	Electronic HEC-RAS files from NHDOT, 2000	
	105560	Calef Hwy (RT 125)		
	88171	Hedding Road (RT 87)	WSPRO print out and As-built from NHDOT, 2000	
Lee	61457	Wadleigh Falls Road	As-built drawings from NHDOT, dates vary	
	35683	Lee Hook Road		
Durham	20082	Wiswall Road	Electronic HEC-RAS files from CLD Consulting, 2009	
	16028	Packer's Falls Road	FEMA FIS Backup Data	
Newmarket	1602	RT 108		
	Sum	mary of Bridge Structure Source	for the RT108 Corridor	
Watercourse	Station	Road Name	Data Source	
Floodplain	71	Newmarket Road (RT 108)	Survey drawings from NHDOT, 2010	
Hamil Brook	1040	Newmarket Road (RT 108)	FEMA FIS Backup Data	
Longmarsh Brook	4182	Bedard Road		
Longmarsh Brook	1703	Longmarsh Road		
Longmarsh Brook	275	Tote Road		

Hydraulics 1	Model -	- Dam and In-lin	e Structural Data	
	Summar	y of In-line Structure	Source for the Lamprey River	
Community	Station	Road Name	Data Source	
Epping	127265	Bunker Pond Dam	Electronic HEC-RAS files from NHDOT	
Lee	61266	Wadleigh Falls Dam	Land Records	
Durham	19859	Wiswall Dam	Electronic HEC-RAS files from CLD	
			Consulting Engineers	
Newmarket	1286	Coffee Sluice	Electronic HEC-RAS files from Wright-Pierce	
Newmarket	1164	Macallen Dam		

- NHDES Dam Management studying removal of Bunker Pond dam
- Wiswall bridge has been replaced and downstream dam replacement in near future
- Macallen Dam recently inspected per NHDES request
- Spillway dimensions and layout, elevation field verified

Calibrating the Watershed

<u>Hydrology Model</u> – Calculated flood flow for the gaged 183 sq.mi. watershed

- Results of calibrated model run for current land use (2005) using TP-40 rainfall. $Q_{100 \text{ TP-40}} = 7,580 \text{ cfs} \text{ vs. } Q_{100 \text{ FIS}} = 7,300 \text{ cfs}$
- Results of calibrated model run for current land use (2005) using NRCC Atlas rainfall. $Q_{100, CA} = 10,649$ cfs
- 68-percent confidence interval of gaging station estimate for data from 1935-2009, $Q_{100, LP3} = 9,411$ cfs

 $L_{0.01,0.68} = 8,862 \text{ cfs}$ $H_{0.01,0.68} = 10,040 \text{ cfs}$

29