

City Hall Watershed 6.1 cups of sediment 6.34 lbs

McGee Watershed 12 cups of sediment 9.93 lbs

Sample Date: 2/5/12 Sample Date: 3/4/12

Of Sediment and Pollutants

City of Lincoln, Nebraska 75 Square Miles ^{If 30% is paved}

_per year

So what is the Cost?

To our streams

To remove all the trash

To our infrastructure

To clean out plugged up manholes To vacuum out all the pipes

480-804 Cups per acre per year 492-667 Pounds per acre per year

40-67 Cups per acre per month 41-55 Pounds per acre per month

Lincoln, Nebraska

1st Ring Suburb

"In the 1930s, the federal government gave cities 75 cents of every dollar they needed to build water and sewer systems. Today, we get pennies on the dollar. The result? Leaking pipes, falling equipment, wasteful systems ... at a time when waste means disaster." - Atlanta Mayor Sidney Franklin

the cost of replacement

Louisville, KY - \$500 Million Nashville, TV - \$1.3 Billion Cincinnati, OH - \$1.5 Billion Cleveland, OH - \$1.6 Billion Atlanta, GA - \$3.0 Billion Omaha, NE - \$1.5 Billion San Francisco, CA - \$1.5 Billion Los Angeles, CA - \$2.0 Billion New York, NY - \$2.1 Billion Portland, OR - \$1.4 Billion Kansas City, MO - \$4.5 Billion (\$2.4 Billion for stormwater alone)

replacing and expanding the current model is not viable

BNIM believes a new model is needed Dawn of the Restorative Era

TRANSFORMATION

Street and sidewalk areas alone can represent up to 70% of impervious surfaces in urban environments. They are major runoff generators.

from liabilities to landscape infrastructure systems that

• solve stormwater management challenges

- reduce infrastructure costs
- · increase surrounding property values

ebraska Post-Construction Stormester Workshop | March 21 | 13

Stormwater Best Management Practices (BMPs)

Why Are They Important?

Let's Consider What Happens To Stormwater When We Change the Landscape ...

So, Why Stormwater BMPs? Integrate Stormwater into the Landscape Restore Ecological Function Turn Problems into Beauty

ion Stormwater Workshop | March 21 | 15

Photos: Assassi, David Dods

1012 Nebraska Post-Construction Stormwater Workshop | March 21 | 94

USGBC Stormwater Research Project

- Promote BMPs
- Raise Awareness of What is Possible
- Understand How Design and Site **Features Affect Performance**

Research Concepts

- Quality and Quantity of runoff is measured at both the Inflow (A) & Outflow (B) of Stormwater BMP's.
- Results from the outflow are compared to the results from the to the results from the inflow, showing the degree of improved water quality and quantity (C).

A - B = C

Testing and Equipment

- Teledyne ISCO 6712 Portable Samplers
 - Monitors flow and takes samples of runoff for lab quality tests. Flow Measured by Bubble Tube and logged into the ISCO
- computer.

Testing and Equipment

 Infiltration Testing Piezometer: Measures and logs water level in detention area.

Testing and Equipment

- Onset Data Logging Rain Gauge (Rooftop Tipping Bucket)
 Monitors Rainfall Intensity
 - Rainfall Quantity Measurements and Logging
 - Total Volumes
- Software - Flow Link (ISCO) - HOBOware (Tipping Bucket & Piezometer)

Testing and Equipment

- Soil Sampling
- Test Particle Size Distribution

- Zinc Organic Mater
- Soil Moisture

Data Collection

- Properties Tested
 Total Suspended Solids (TSS)
 Total Nirrogen (TN)
 Total Phosphorus (TP)
 Zinc (Zn)
 Chioride (Ci)
 Sulfate (S)
 eld

 - pH Electrical Conductivity (EC µS) Fecal Coliforms (Ecoli)

	City Union Mission Cell No. 1									
Event	Date	Rain Depth (in)	Rain Depth (ft)	Flow Volume (ft ³						
1	3/24/10	0.56	0.047	327						
	3/27/10	0.57	0.048	333						
2	4/2/10	0.29	0.024	169						
	4/6/10	0.58	0.048	338						
	4/6/10	1.19	0.099	694						
3	4/22/10	1.89	0.158	1103						
	4/24/10	0.50	0.042	292						
	4/24/10	0.52	0.043	303						
4	5/10/10	1.63	0.136	951						
	5/12/10	1.67	0.139	974						
	5/13/10	0.71	0.059	414						
	5/19/10	0.69	0.058	403						
5	6/2/10	0.73	0.061	426						
6	6/8/10	1.34	0.112	782						
7	6/12/10	1.69	0.141	986						
	6/14/10	0.99	0.083	578						
8	7/5/10	1.42	0.118	828						
9	7/11/10	1.79	0.149	1044						
10	7/20/10	1.22	0.102	712						
	7/24/10	0.81	0.068	473						

According to this calculation we should have had standing water on 9 of 20 sampling events (with overflows on 5 of 20).

 Cordgrass roots reach 30 inches deep.

2012 Nebraska Post-Construction Stormwater Workshop | March 21 |

Findings City Union Mission, Infiltrate

- Site Characterization
- Plant Root Benefits
- Cost

Typical Downspout

Equipment Attachment

Water Quality

 Modest pollutant removal 56% Reduction of TN 50% Reduction of TP

Exported some constituents

			Appleb	ee's Cou	irtyard '	'in"					
Rain Event	Event	Location	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	pН	EC µS	TSS
5/15/2009		First Flush	1.01	3.91	0.11	0.11	5.46	ND	6.8	85	.11
6/15/2009		First Flush	1.47	5.3	0.06	0.14	2.94	1.00	6.8	74	19
6/27/2009	1	First Flush	0.48	4.33	1.07	0.02	ND	ND	6.8	46	97
4/2/2010			0.43				No Same	ple			
5/12/2010	3		0.58				No Sam	ple			
5/26/2010	4	First Flush	0.34	1.14	0.06	ND	0.23	0.24	7.33	23	43
5/26/2010		First Flush	0.34	1.54	0.07	ND	0.15	0.72	7.40	46	68
6/2/2010	5	First Flush	0.49	1.46	0.06	ND	0.15	0.31	7.38	25	4
6/8/2010	6	First Flush	1.60	1.26	0.04	ND	0.19	0.48	7.29	20	20
6/14/2010		Bottle 1	1.31				No Sam	ple			
6/14/2011	7	Composite	1.31	0.71	0.04	ND	0.15	ND	7.00	18	36
6/14/2011		First Flush	1.31	0.69	0.06	ND	0.15	ND	7.25	13	60
			Applebe	e's Cour	tyard "	Out"			_		_
Rain Event	Event	Location	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	pН	EC µS	TSS
6/27/2009	1	First Flush	0.48	1.39	0.06	0.08	0.77	1,87	7.2	95	112

6/27/2009	1	First Flush	0.48	1.39	0.06	0.08	0.77	1,87	7.2	95	112
5/10/2010	2		1.06				No Sam	ple			
5/12/2010	3	First Flush	0.58	1.03	0.10	0.04	13.70	1.53	7.28	73	48
5/13/2010			0.88				No Sam	ple			
5/26/2010	4	First Flush	0.34	2.09	0.10	0.02	1.74	1.74	7.40	72	116
6/2/2010	5	Composite	0.49	1.43	0.08	ND	1.33	2.35	7.72	73	44
6/2/2010		First Flush	0.49	1.43	0.08	ND	0.37	1.07	7.73	52	16
6/8/2010	6	First Flush	1.60	0.96	0.04	0.02	0.21	2.90	7.92	115	72
6/8/2010		First Flush	1.60	1.53	0.07	ND	0.78	1.67	7.42	76	48
6/14/2010			1.31				No Same	ple			
6/14/2010	7	Composite	1.31	1.12	0.05	ND	0.23	0.94	7.44	79	60

Findings

- Undersized for Larger Storm Events
- Distribution of Flows

Wetland

- Sand Filter Runoff First Flush from Renner Road

Water Quality Sand Filter and Sediment Forebay

- Removal
- Average of 117 mg/l of TSS Reduction of TN and TP
- Compared to Renner Runoff Better Water Quality (except Chloride and Sulfur)

			Appie	Dee's 59	nd rite	C.186.					
Rain Event	Court	Note	Precip	TN ppm	TP ppm	Zo ppm	Ci ppm.	S pper	- 194	EC µS	190
6/27/2009		First Flush	0.48	3.17	0.29	0.54	42.95	16.26	7.4	215	47
9/21/2009		First Flash	0.97	5.02	0.32	0.09	21.57	1.57	7.3	282	45
4/2/2010			0.43				No 54				
4/22/2010	2	First First	0.46	130	50.0	ND.	62.40	15.78	7.36	348	16
4/23/2010		First Flush	0.46	1.30	50.0	ND	12.70	13.61	7,41	489	45
4/24/2010	3	First Flush	0.47	2.37	0.05	0.02	148.30	28.92	7.54	654	48
5/10/2010	4	First Flush	1.06	3.53	0.12	0.02	143.40	32.62	7.62	695	160
5/10/2010		First Flash	1.05	1.63	0.07	ND	64.30	1.23	7.51	3/2	172
5/12/2040	5	First Fluit	0.58	1.13	0.05	ND	47.90	9.26	7.51	267	444
5/13/2010			0.88				No Sa	nglø .			
5/15/2010			0.35				No Sa	noie.			
5/19/2010	6	First Flush	0.9	1.12	0.02	0.52	100.50	18.25	7.43	489	90
5/20/2010	7	First Flush	0.26	2.07	0.27	ND ·	22.30	4.19	7.21	149	480
5/28/2010	8	First Flush	0.34	2.99	0.24	ND	26.53	19.72	7.79	337	168
6/1/2010		First Flash	0.35	2.09	0.13	ND	12.87	7.70	8.02	201	194
6/2/2010	10	First Fluid	0.49	3.69	0.23	. ND	\$7.57	25.38	8.28	499	126
6/2/2010		Dottie 6	0.49	2.73	0.36	ND	48.25	7.05	8.17	235	480
6/8/2010	18	First Flush	1.60	3.02	0.10	ND	20.73	15.12	7.90	514	128
6/8/2010		First Flugh	1.60	2.43	0.50	ND	40.47	8.44	7.92	257	752
6/14/2010			1.31				No Sat	nple			
6/14/2010			1.31				No Sar	note			
1/1/2010			0.85				No Sar	npie			
7/11/2010			0.85				No Sa	nple			
7/16/2010	12	First Floor	0.7	0.97	0.04	ND	2.70	0.53	7.55	18	32
1/16/2010			0.7				No Sa	noie			
7/20/2010		First Flash	0.83	0.75	0.03	ND	2.60	0.30	7.33	18	40
							-				
				ee's Sar							
Ran Event	Event	Notice.	Precip		TP ppm	Znopm	C) ppm	S ppre	PT.	EC p8	795
6/27/2009		First Fluid	0.48	2.92	0.07	0	63.92	17.57	7.5	642	12
4/2/2010	1	First Flah	6.43	2.77	0.22	ND	208.00		7.52	940	80
4/23/2010	5	First Flash	0.46	0.56	0.06	ND	9120	9.85	7.42	361	20
4/23/2010			0.46				No Sat	npie			
4/24/2010	3		0.47				No Sar				
\$/10/2010	4	First Flush	1.06	0.65	0.06	0.01	8130		7.37	343	308
5/12/2010	5		0.54				No Sar	ngle			
5/26/2010	8	First Flush	0.34	3.46	0.06	.50	631.90	69.06	7.85	2590	- 24
5/25/2010	8	Composite	0.34	1.62	0.07	50	97.95	16.41	7.54	496	36
5/26/2010		First Flash	0.34	1.58	0.09	ND	18.36	18.66	7.62	578	72
6/2/2010	10	First Flush	6.49	1.29	0.09	ND	\$9.44	10.78	8.06	343	44
6/8/2010	18	First Flush	1.60	1.36	0.08	ND	68.75	14.69	8.09	489	60
7/11/2010			0.85				No Sar	npie			
7/1/2010			0.85				No Sa	noie			
7/16/2010			0.7				No Ser	nple			
7/16/2010			0.7				No Sar	mple			
	13	Grabbed	0.83	1.13	0.09	- ND	42.30	0.07		324	10

Water Quality

Poor Performance

Unstabilized spillway Newly planted vegetation

Water fowl

				Applet	ee's We	etland						
Rain Event	Event	Notes	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	pН	EC µS	TSS	EColi
4/22/2010	1	Composite	1.28	1.37	0.08	ND	308.30	31.14	7.44	1040	52	0
4/24/2010	2	Composite	0.47	1.47	0.07	ND	166.80	23.46	7.32	712	48	0
4/30/2010	3	First Flush	0.40	1.87	0.04	ND	362.50	49.61	7.53	139	96	8
5/10/2010	4	First Flush #9	1.06	2.57	0.10	ND	306.80	44.47	7.70	1180	96	10
5/12 - 5/13			0.58					No Samp	le			
5/19/2010	5	Composite	0.90	2.38	0.05	ND	262.90	38.33	7.55	109	116	25
5/26/2010	6	Composite	0.34	2.57	0.35	ND	109.07	21.69	7.67	596	688	1921
5/26/2010	6	First Flush #1	0.34	5.03	1.28	ND	134.94	27.99	7.80	720	2552	3842
6/1/2010	7	First Flush #1	0.16	2.69	0.28	ND	67.32	14.61	8.04	429	420	2180
6/2/2010	8	Composite	0.49	1.79	0.18	ND	44.18	9.36	7.74	259	180	4045
6/2/2010		First Flush	0.49	2.09	0.14	ND	171.35	29.17	7.78	851	200	2757
6/8/2010	9	Grab Sample	1.60	0.97	0.12	ND	101.85	10.56	8.18	326	188	1659

Findings lehee's Tr nent Train

Success of Sand Filter

- Wetland Performance
- Calcium Chloride
- Renner Road

Level Spreader

Manhole with Multiple Outlets Outlet into Raingarden

1st Growing Season

2nd Growing Season

2012 Nebraska Post-Construction Stormwater Workshop

Time to Recorded Runoff

1 hr, 20 min Longer Through Rain Garden

Findings The University of Kansas, Modifi	ied Detention Basin / Raingarden
TimeSoil Moisture	
Photo: Jim Schuessler	2012 Nebraska Post-Construction, Stormwalter Workshop March 21 54

10 Important Takeaways

- 1) Preserve the Existing Landscape It is easier to preserve the landscape than to rebuild it

2) Development Significantly Disturbs Site Soils

- Construction causes loss of plants, topsoil, and soil structure
 Stabilize sites before finishing BMPs. Erosion is the enemy of BMPs.

- Restore site soils to promote healthy plants

10 Important Takeaways

3) Site Characterization Informs Design

- Soil type and compaction
- Fill material
- Depth to bedrock and groundwater

4) Size is Important. Properly Sized BMPs:

 More effectively remove pollutants
 Convey large storms without erosion

10 Important Takeaways

5) Learning from Mother Nature (1): Distributed Systems

- Distributed systems are less prone to overall failure if one part has problems
- 6) Learning from Mother Nature (2): Diversity
 - Diverse systems are more resilient than monocultures
 - If you lose one plant, the entire system doesn't fail

10 Important Takeaways

7) Plant Material is Important

- Plants promote infiltration, prevent erosion, remove pollutants, and build soil
- Match plants to moisture zones in the garden

8) Keep Designs Simple

- The more complex the system, the more difficult to build and maintain
- This is especially important if BMPs are new to the construction industry

15

2012 Nebraska Post-Construction Stormwater Workshop | March 21 | 64

2 Nebraska Post-Construction Stormeater Workshop | March 21 | C

ebraska Post-Construction Stormeater Workshop | March 21 | 😅

8) Keep Designs Simple

The more complex the system, the more difficult to build and maintain

This is especially important if BMPs are new to the construction industry

10 Important Takeaways

- 9) Low Cost Can Still be Effective
- 10) Stormwater Management Can be Beautiful

Thank You

BNIM

Jim Schuessler BNIM Kansas City, MO 816.783.1608 jschuessler@bnim.com

Document Location http://issuu.com/bnim/docs/bmp_full_report

Or Scan the QR Code above using a smart phone QR code scanner

The Maderandan Provide Antonian Proceedings Mandadaman 1 March 70